
Performance Analysis of Contemporary

Light-Weight Block Ciphers on 8-bit

Microcontrollers

Sören Rinne, Thomas Eisenbarth, and Christof Paar

Horst Görtz Institute for IT Security
Ruhr University Bochum
44780 Bochum, Germany

soeren.rinne@rub.de,{eisenbarth,cpaar}@crypto.rub.de

Abstract. This work presents a performance analysis of software im-
plementations of ciphers that are specially designed for the domain of
ubiquitous computing. The analysis focuses on the special properties of
embedded devices that need to be taken into account like cost (given
by memory consumption) and energy requirements. The discussed ci-
phers include DESL, HIGHT, SEA, and TEA/XTEA. Assembler im-
plementations of the ciphers for an 8-bit AVR microcontroller platform
were analyzed and compared with a byte-oriented AES implementation.
While all ciphers fail to outperform AES on the discussed 8-bit platform,
TEA/XTEA and SEA at least consume significantly less memory than
the AES.

Keywords: microcontroller, software performance, embedded security, ubiqui-
tous computing, SEA, TEA, XTEA, DESL, AES.

1 Motivation

As ubiquitous computing evolves, we have recently seen new ciphers being pro-
posed specifically for the domain of ubiquitous computing. The target of these
newly proposed ciphers is not a higher levels of security, as many of these have
a shorter key length than the AES. These ciphers rather aim at providing suffi-
cient security in the environment of restricted resources as can be found in many
ubiquitous devices. Neither is their focus on a higher maximum performance, but
primarily on a smaller footprint, needing less resources such as energy and com-
puting power, and though giving ubiquitous devices a longer lifetime, smaller
outline etc. At the same time a security goal of medium to high security is still
achievable.

Two of these newly proposed ciphers, namely DESL [17] and HIGHT [11],
were designed for a small hardware footprint rather than outstanding software
performance. Yet many ubiquitous devices such as MICA Motes [3] and most
low cost embedded devices ship with a contemporary low-power 8-bit microcon-
troller. Hence a software implementation of the cipher might be cheaper after



all. Consequently we see a high necessity for a performance analysis of software
implementations of these newly proposed light-weight ciphers.

This work features a performance analysis of light-weight ciphers targeted
at highly constrained devices. The analysis focuses on the special properties of
embedded devices that need to be taken into account like cost (given by memory
consumption) and energy needs.

2 Overview of Ciphers

This Section provides a short description of each cipher. An overview of the
ciphers’ parameters is given in Table 1. Since the parameters of SEA can be
chosen, the values that fit our implementation are given in this Table.

Table 1. Characteristic sizes of the focused ciphers

Cipher AES DES DESL DESX HIGHT SEA TEA XTEA

Block length 128 64 64 64 64 96 64 64
Key length 128 56 56 184 128 96 128 128
Rounds 10 16 16 16 32 141 32 32

The range of the ciphers is quite huge, starting with DESL comprising a 56-
bit key providing only medium security. Other ciphers like HIGHT use a 128-bit
key to provide high security but use a smaller block size than AES [4] to meet
the needs of a restricted environment. Ciphers like SEA [19] are kept flexible
in key size so each user may configure it for the security goal and performance
needed.

2.1 AES

The Advanced Encryption Standard (AES) [4], also known as Rijndael, is the
successor of the Data Encryption Standard (DES). It was announced by Na-
tional Institute of Standards and Technology (NIST) as a U.S. FIPS in 2001.
The cipher developed by J. Daemen and V. Rijmen was the winner of a 5-year
standardization process. It has been deployed widely in many crypto applica-
tions, being the de-facto standard symmetric block cipher.

AES is a block cipher using an 128 bit block with an 128, 192 or 256 bit key
as input. It operates on a 4×4 array of bytes. Each round of AES consists of
four stages, namely AddRoundKey, SubBytes, ShiftRows, and MixColumns. The
AES is known to be quite efficient, especially on 8-bit architectures, owing to its
byte-oriented design. Our assembler implementation of the AES is inspired by
the AES implementation of B. Gladman [9].



2.2 DES

The Data Encryption Standard (DES) [8] is a cipher selected as an official Federal
Information Processing Standard (FIPS) for the United States in 1976. As a
block cipher DES operates on blocks with a size of 64 bits. The key also consists
of 64 bits; only 56 of these are actually used by the algorithm, the other ones
are parity check bits.

The overall structure consists of a so-called Feistel network with 16 identical
base rounds with 8 substitution boxes (S-Boxes), an initial permutation, a final
permutation, and a separate key schedule. The whole cipher consists only of bit
operations, namely shifts, bit-permutations and exclusive-or operations.

DES is not considered as secure anymore. Thanks to Moore’s Law, DES
can be broken by exhaustive key search in reasonable time. There are sev-
eral confirmed DES crackers such as the EFF DES Cracker [7] or the COPA-
COBANA [14]. Furthermore attacks like differential cryptanalysis, linear crypt-
analysis, and Davies’ attack [2] have been published.

Yet for some applications where security is not as critical, DES and variants
of it are still in use.

DESX The block cipher DESX (or DES-X) [13] is an extension to DES to im-
prove some weaknesses of its predecessor. It is defined by DESXK,K1,K2

(M) =
K2 ⊕ DESK(M ⊕ K1). It was originally suggested by Ron Rivest in 1984 to
protect the cipher DES against exhaustive key-search attacks. DESX is said to
be substantially more resistant than DES.

DESL Like the above mentioned DESX DESL (DES Lightweight Extension) [17]
is an extension to DES to comply with the requirements of small computational
devices like RFID devices or Smart Cards. It was suggested by A. Poschmann
et al. in 2006 as a new alternative for ultra-low-cost encryption. To decrease
chip size requirements it uses only one S-Box repeated eight times. It therefore
requires 38% less transistors than the smallest DES implementation published.

2.3 HIGHT

HIGHT is another block cipher proposed by Deukjo Hong et al. [11] which is
working on a 64-bit block length and a 128-bit key length. It was proposed to be
used for ubiquitous computing devices such as a sensor in USN or a RFID tag
at CHES ’06 due to its low-resource hardware implementation. Like many of the
discussed ciphers, HIGHT makes use of simple operations such as exclusive-or,
addition mod 28, and bitwise rotation.

The cipher is a variant of generalized Feistel network. It consists of an initial
transformation, 32 rounds using 4 subkeys at a time, a final transformation and a
key schedule producing 128 subkeys. HIGHTs key schedule algorithm is designed
to keep the original value of the master key after generating all whitening keys
and all subkeys. Therefore the subkeys are generated on the fly in encryption
and decryption.



2.4 SEA

The Scalable Encryption Algorithm (SEAn,b) [19] is designed to be parametric
in plaintext/key and processor size. In dependence on given hardware param-
eters like processor word size, the SEA parameters will be chosen. The main
advantages of SEA are efficient combination of encryption/decryption and ”on-
the-fly” key derivation. It was designed to be an algorithm for small embedded
applications like RFID or Smart Cards.

SEAn,b parameters in our case are plaintext/key size n = 96, processor word
size b = 8, and number of words per Feistel branch nb = n

2b
= 6. Therefore we

have a suggested number of cipher rounds of nr = 3n
4

+ 2 · (nb + ⌊b/2⌋) = 92.
As we used the standard implementation provided by the author we have 94
rounds.

The cipher is targeted for processors with a limited instruction set and there-
fore uses only bit operations such as exclusive-or, word rotation, bit rotation,
addition mod 2b, and a substitution box.

2.5 TEA

The Tiny Encryption Algorithm (TEA) was first presented at the Fast Software
Encryption workshop in 1994 by David Wheeler and Roger Needham [21]. The
focus of the design was simplicity of description as well as implementation.

TEA is a block cipher operating on 64-bit blocks with a 128-bit key. The
Feistel structure is dominated by suggested 64 identical rounds consisting of bit-
operations like shifts, addition/substraction mod 28 and exclusice-or operations.

A number of revisions of TEA has been designed in order to obliterate some
weaknesses of the original version. The revisions of the cipher, Block TEA (often
referred to as XTEA) and XXTEA (published in 1998), were needed to secure
the cipher.

TEA suffers from equivalent keys - each key is equivalent to three others,
which means that the effective key size is only 126 bits. Due to this weakness
a method for hacking the Microsoft’s Xbox game console, where TEA was used
as a hash function, has been developed [18]. The cipher is also vulnerable to a
related-key attack which requires 223 chosen plaintexts under a related-key pair,
with 232 time complexity [12].

2.6 XTEA

As mentioned before the effective key length of TEA is 126 bits not 128. So in
1996 Needham and Wheeler made two adjustments [15]. The first was to adjust
the key schedule and the second was to introduce the key material more slowly.
With these adjustments the weaknesses should be repaired and the simplicity is
almost retained.



3 Framework Set-Up and Tools

In this Section we will show how the ciphers were implemented for the 8-bit
AVR architecture. A short introduction to the software development tools and
how to measure clock cycles and throughput are given as well.

3.1 Platform Specification

AVR microprocessors are a family of 8-bit RISC microcontrollers. Their memory
is organized as a Harvard architecture with a 16-bit word program memory and
an 8-bit word data memory. Due to its easy usage, its low power consumption
and its comparatively low price, the AVR microcontrollers have reached a high
popularity in embedded system design. Most of the AVR instructions working on
the 32 registers are handled in one clock cycle. Reading from the program mem-
ory, where our look-up tables are stored, costs 3 clock cycles, whereas reading
an writing from an to the Flash memory can be performed in 2 cycles.

Since we aimed to implement the ciphers for ubiquitous devices, we took
MICA Motes as an adequate target platform. MICA motes (e.g. MICAz, MICA2,
MICA2DOT [3]) are designed for development of wireless sensor networks and
use an ATmega128 or ATmega128L microcontroller as CPU. The ATmega128(L)
is equipped with 128 kbyte of Flash memory and 4 kbytes of SRAM. Yet our
implementations of the ciphers, as presented in Section 4, are also executable on
smaller AVR devices comprising less SRAM and Flash memory.

3.2 Porting to the AVR Microcontroller

The authors of a cipher usually provide a reference implementation. We had
many different programming languages, e.g. C or Java. In order to reduce the
size of the code and to reach a maximum performance on our hardware, all of
the ciphers were reimplemented in AVR-Assembly language. We implemented
them ourselves except for the AES, which is an implementation of the Chair for
Communication Security at the Ruhr-University of Bochum, and SEA, which
is an existing implementation in assembly language available at [5]. Other im-
plementations of AES on an AVR platform can be found at [16][10]. For other
TEA and XTEA implementations on AVR see [6]. To ensure a fair benchmark-
ing process, we used these reference implementations as a starting point for the
assembly implementations. The implementations were neither solely optimized
for performance only nor for extremely small code size. Instead we tried to yield
a good trade-off between both. For the implementation of SEA we made use of
an existing version of the author available at [5]. We only made slight changes
with respect to our compiler.

In our performance analysis in Section 4 we will use the AES as a reference
implementation for the other ciphers.



3.3 Development Tools

For the software development we used the tool Programmer’s Notepad 2 [20].
This is a open source text editor with special features for coders hosted on the
Windows platform. Programmer’s Notepad 2 contains an automatic makefile ex-
ecution. It compiles the C program, assembles the assembly language program,
links it to an ELF file, and then converts it to a COF file. After this procedure
has run without errors we used the output file from Programmer’s Notepad 2
to execute and debug the code in AVR Studio 4 [1] and simulate it on an AT-
mega128 device. AVR Studio 4 is an Integrated Development Environment (IDE)
for writing and debugging AVR applications on the Windows platform. The tool
provides a full-scale debugger which was used to obtain cycle counts of the execu-
tion of the ciphers. Cycle counts were used to benchmark the throughput. Code
size was measured using the Programmer’s Notepad 2 and GCC compiler.

4 Results

In this Section we present the results of our implementations. The results are
compared to an implementation of the AES that was optimized for the 8-bit
AVR microcontroller environment as well. The comparison focuses on code size,
because memory is an important for size and price of an embedded or ubiquitous
device, and on execution time, i.e. throughput, as execution time corresponds to
the power consumption of a device.

4.1 Memory Usage

As embedded systems development is strongly price-driven, there are high re-
strictions in the size of available Flash memory and SRAM. This applies even
more to applications like ubiquitous computing or even RFIDs, where power
consumption is an important issue, too. The Flash (program) memory of the de-
vice is used to store program code and look-up tables, if applicable. The smaller
SRAM is used for dynamic access during program execution.

Table 2 shows the memory allocation in flash memory of every cipher. Fig-
ure 1 visualizes the results ordered by size.

Table 2. Memory allocation of program code in Flash in bytes

Cipher TEA XTEA SEA DESL AES DES DESX HIGHT

Code size 1140 1160 2132 3098 3410 4314 4406 5672

As shown in Figure 1, TEA is the smallest cipher followed by XTEA and SEA.
DESL is only slightly smaller than AES. The two implementations of HIGHT



are using the highest amount of program memory. Yet all of the ciphers could
be run on smaller engines than the used ATmega128.

0

1000

2000

3000

4000

5000

6000

TEA XTEA SEA DESL AES DES DESX HIGHT

Fig. 1. Code size of ciphers in bytes

4.2 Performance

In the following performance benchmark input and output arrays are of the size
of the block size of each cipher. That is to say that we encrypt or decrypt one
block with each cipher.

Table 3 shows the number of cycles needed for encryption and decryption for
each cipher.

Table 3. Performance of encryption and decryption in measured CPU cycles

Cipher HIGHT AES TEA XTEA DESL DES DESX SEA

Encryption 2449 3766 6271 6718 8365 8633 8699 9654
Decryption 2449 4558 6299 6718 7885 8154 8220 9654

Recall that the implementation of HIGHT is the one with the highest use of
flash memory. Though in this benchmark it achieves the lowest number of cycles
for encryption and decryption of one block of data.

Table 4 and table 5 focus on the throughput of encryption and decryption
of each cipher. Column 2 in Table 4 and Table 5 shows the block size in bytes,
column 3 replicates the count of cycles from table 3. Column 4 is the quotient of
column 3 and 2 and column 5 shows the throughput of encryption/decryption
in cycles per byte. The throughput in column 5 is computed assuming the CPU
being clocked at 4 MHz.

Figures 2 and 3 reprints the values of Tables 3, 4 and 5 ordered by cycles
and respectively by throughput.



Table 4. Throughput of encryption

Cipher block size Encryption Encryption Throughput
[bit] [cycles] [cycles/bit] [bit/sec]

AES 128 3766 29,42 135953
HIGHT 64 3188 49,81 80301
TEA 64 6271 97,98 40823
SEA 96,8 96 9654 100,56 39776
XTEA 64 6718 104,97 38107
DESL 64 8365 130,70 30604
DES 64 8633 134,89 29654
DESX 64 8699 135,92 29429

Table 5. Throughput of decryption

Cipher block size Decryption Decryption Throughput
[bit] [cycles] [cycles/bit] [bit/sec]

AES 128 4558 35,61 112330
HIGHT 64 3188 49,81 80301

TEA 64 6299 98,42 40641
SEA 96,8 96 9654 100,56 39776

XTEA 64 6718 104,97 38107
DESL 64 7886 123,22 32463
DES 64 8154 127,41 31396

DESX 64 8220 128,44 31144

0

2000

4000

6000

8000

10000

12000

HIGHT AES TEA XTEA DESL DES DESX SEA 

Fig. 2. Cycle count of ciphers



0

20000

40000

60000

80000

100000

120000

140000

160000

AES HIGHT TEA SEA XTEA DESL DES DESX 

Fig. 3. Throughput of encryption and decryption

Figure 3 shows that the reference AES implementation has a higher through-
put than all of the newly proposed ciphers. This is in some cases due to the design
objectives of the ciphers. The DES family for example, including DESL, relies
on bit permutations which are almost for free in hardware but very expensive in
software. This is even true on an 8-bit microcontroller.

4.3 Discussion

Since we did not want to focus solely on code size or on performance, we intro-
duced an additional metric. The ratio of throughput and code size was computed
to visualize the combined metric. This metric is given in Figure 4.

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

AES TEA XTEA SEA HIGHT DESL DES DESX 

Fig. 4. Throughput-code size ratio of encryption and decryption

Still AES is doing quite well compared to the other ciphers. In this metric
the TEA family is at least able to outperform AES in decryption. It can be seen
that the ciphers designed for 8-bit software platforms, namely TEA/XTEA and
SEA (and AES, of course) outperform the hardware-oriented ciphers HIGHT
and the DES family, as expected.



5 Conclusion

We have presented a performance analysis of newly proposed light-weight block
ciphers. Target architecture was the 8-bit AVR microcontroller family that can be
found in many embedded devices and many applications of ubiquitous computing
like wireless sensor networks.

We have shown that many (but not all) of the newly proposed ciphers out-
perform AES in code size. Especially TEA and XTEA have an extremely small
footprint in memory consumption. Yet all of the implemented ciphers were out-
performed by the AES in terms of throughput. This might be a disadvantage in
wireless devices where computation time means power consumption. The HIGHT
was even outperformed by the AES in both, code size and throughput. Though
DESL is slightly smaller than AES in code size, it has a worse performance and
does not provide comparable security.

As an overall summary one should consider well before using one of these
light-weight block ciphers on an 8-bit microcontroller. Only if memory is highly
critical, some of the Ciphers might be an alternative to be considered. Usually
they just provide a worse performance at comparable or worse security target.

References

[1] Atmel Corporation. Avr studio 4.12, build 498. Available from:
http://www.atmel.com/dyn/products/tools card.asp?tool id=2725.

[2] E. Biham and A. Biryukov. An Improvement of Davies’ Attack on DES. In
Proceedings of EUROCRYPT ’94, pages 461–467. EUROCRYPT ’94, 1994.

[3] Crossbow Technology Incl. MPR-MIB User Manual. Revision B, June
2006. Available from: http://www.xbow.com/Support/Support pdf files/MPR-
MIB Series Users Manual.pdf.

[4] J. Daemen and V. Rijmen. The design of Rijndael, the Advanced Encryption

Standard. Springer-Verlag, 2003.
[5] Efton s.r.o. Implementing SEA on x51 and AVR. Available from:

http://www.efton.sk/crypt/sea.htm.
[6] Efton s.r.o. TEA (Tiny Encryption Algoritm) a jeho implementacia v 8051 a

AVR, 2007. Available from: http://www.efton.sk/crypt/tea s.htm.
[7] Electronic Frontier Foundation. Cracking DES. O’Reilly & Associates, 1998.
[8] Federal Information Processing Standards Publication 46-3. Data encryption stan-

dard (des). Technical report, FIPS, 1999.
[9] Brian Gladman. Byte Oriented AES Implementation. Available from:

http://fp.gladman.plus.com/AES/.
[10] H.C. Roepke. AVR Implementation of AES. on website. Available from:

http://www.christianroepke.de/studium praktikumB.html.
[11] D. Hong et al. HIGHT: A New Block Cipher Suitable for Low-Resource Device.

In Proceedings of CHES 2006, 2006.
[12] J. Kelsey et al. Related-key cryptanalysis of 3-WAY, Biham-DES, CAST, DES-X

New DES, RC2, and TEA. In First International Conference on Information and

Communication Security, pages 233–246, 1997.
[13] J. Kilian and P. Rogaway. How to Protect DES Against Exhaustive Key Search

(an Analysis of DESX). Journal of Cryptology, Volume 14:17–35, 2001.



[14] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Breaking Ciphers
with COPACOBANA - A Cost-Optimized Parallel Code Breaker. In Conference

on Special-purpose Hardware for Attacking Cryptographic Systems, 2006.
[15] R.M. Needham and D.J. Wheeler. Tea extensions. Computer Laboratory, Cam-

bridge, 1997.
[16] B. Poettering. AVRAES: The AES block cipher on AVR controllers. published

on website, 2003,2006. Available from: http://point-at-infinity.org/avraes/.
[17] A. Poschmann, G. Leander, K. Schramm, and C. Paar. New Light-Weight DES

Variants Suited for RFID Applications. In Proceedings of FSE 2007. FSE 2007,
2007.

[18] Matthew D. Russell. Tinyness: An Overview of TEA and Related Ciphers. Draft
v0.3, February 2004.

[19] F.X. Standaert, G. Piret, N. Gershenfeld, and J.J. Quisquater. SEA: A Scalable
Encryption Algorithm for Small Embedded Applications. Workshop on RFIP and
Lightweight Crypto, Graz, Austria, 2005.

[20] Simon Steele. Programmer’s Notepad 2, Version v2.0.6.1-ella. Available from:
http://www.pnotepad.org/.

[21] D. Wheeler and R. Needham. TEA, a Tiny Encryption Algorithm. In Lecture

Notes in Computer Science, 1994.


